UNCLASSIFIED AD - 4 2 6 4 3 5 # DEFENSE DOCUMENTATION CENTER FOR SCIENTIFIC AND TECHNICAL INFORMATION CAMERON STATION, ALEXANDRIA, VIRGINIA UNCLASSIFIED NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto. #### U.S. ARMY Technical Memorandum 15-63 # AUDITORY LOCALIZATION OF A HELICOPTER -FROM GROUND POSITION Robert W. Bauer July 1963 AMCMS Code 5162.12.660.08 # HUMAN ENGINEERING LABORATORIES 1-17 0 ABERDEEN PROVING GROUND, MARYLAND Mar Bat . ## DDC Availability Notice QUALIFIED REQUESTERS may obtain copies of this report from Defense Documentation Center, Cameron Station, Alexandria, Va. The findings in this report are not to be construed as an official Department of the Army position. # THE CONTRACTOR AND ADDRESS OF THE PROPERTY # AUDITORY LOCALIZATION OF A HELICOPTER -FROM GROUND POSITION Robert W. Bauer July 1963 APPROVED: Technical Director Human Engineering Laboratories U. S. ARMY HUMAN ENGINEERING LABORATORIES Aberdeen Proving Ground, Maryland #### ABSTRACT Three studies of unaided auditory localization of a helicopter are summarized. In each, an UH-1B helicopter in flight was the sound source and was localized by subjects on the ground. Absolute mean angular errors of different groups and under different conditions ranged from 8° to 24° and more, with smaller errors found under quieter conditions and at greater target ranges. Error size was not significantly affected by: flight direction; altitude changes from low nap-of-the-earth (20-60 feet) to low contour (100-110 feet); interfering noises from 90-mm. gunfire; or wearing a combat helmet. There were significant differences associated with interfering noise from passing vehicles and with subjects' auditory acuity. ### CONTENTS | ABSTRACT | • | • | • | • | • | iii | |------------------------------------|-----|-----|----|---|---|-----| | INTRODUCTION | • | • | • | • | • | 1 | | STUDIES I AND II | | | | | | | | METHOD AND PROCEDURE | | | | | | 3 | | Flight Plans and Terrain | | | | | | 3 | | Aircraft | | | | | | 3 | | Subjects | | | | | | 7 | | Equipment and Procedure | | | | | | 7 | | RESULTS AND DISCUSSION | | | | | | | | Mean Errors, Flight Direction, and | Ra | nge | 9. | ٠ | • | 8 | | Range | | | | | | 8 | | Altitude | • | ٠ | • | ٠ | • | 9 | | Interfering Noise | • | • | • | • | • | 9 | | Apparent Versus Actual Position | • | • | • | • | • | 11 | | STUDY III | | | | | | | | METHOD AND PROCEDURE | | | _ | _ | | 13 | | General Description | | | | | | 13 | | Terrain and Environment | | | | | | 15 | | Aircraft | | | | | | 15 | | Subjects | | | | | | 15 | | Equipment and Procedure | | | | | | 16 | | • • | | | | | | | | RESULTS AND DISCUSSION | | | | | | | | Mean Errors, Flight Direction, and | Rai | nge | €. | • | • | 16 | | Helmet Effect | | | • | | • | 16 | | Interfering Noise | | | | | | 19 | | Hearing Defects | | | | | | 20 | | | | | | | | | | GENERAL DISCUSSION | | • | • | • | • | 21 | | CITAMA DV | | | | | | 23 | | REFERE | ENCES | 24 | |-----------------|---|----| | APPEND | ıx | 25 | | 7017-711 1TA TT | r. | | | 1. | UH-1B Helicopter Flying Nap-of-the-Earth Over Jolon Valley, Hunter-Liggett Military Reservation | 2 | | 2. | Flight Plan 1 | 4 | | 3. | Flight Plan 2 | 5 | | 4. | Flight Plan 3 | 6 | | 5. | Schemes Illustrating Problem of Apparent Position
Versus Actual Position at a Marking Point such as
E, K, or H | 10 | | 6. | Location of Marking Points and Flight Plan for Study III, Aberdeen Proving Ground, Md | 14 | | 7. | Mean Absolute Errors at Different Ranges | 17 | | 8. | Number of Subjects Reporting Aircraft Audible at Different Ranges, During Approach and Departure | 18 | | TABLES | 3 | | | 1. | Apparent Positions Calculated for Two Different Flight Directions and Various Speeds on By-Pass Course-Marking Points | 12 | | 2. | Mean Absolute Errors at Different Ranges | 19 | | 3. | Sidedness of Hearing Damage Related to Direction of Error | 20 | #### AUDITORY LOCALIZATION OF A HELICOPTER --- #### FROM GROUND POSITION This report summarizes three related studies of ground-to-air auditory localization. In each of these studies, the subjects on the ground used unaided hearing to make azimuth localizations; and in each study, the UH-1B helicopter in flight was the sound source. The principal dependent variable was accuracy of azimuth pointing. Two of these studies were conducted in the Jolon Valley at Hunter-Liggett Military Reservation (HLMR), Calif., with the support of Combat Development Experimentation Center (CDEC), 27 February to 15 March 1963. The third study was conducted at Aberdeen Proving Ground (APG), Md., 13 to 15 May 1963. 10.000 The first study was concerned with two questions: 是是一种是一种,是一种的一种, こうしていることには、これにはないのではないというできます。 - a. Is the helicopter localized more accurately on departure than on approach? - b. Is the helicopter localized more accurately on homing, rather than by-passing, courses? Homing courses are defined as those which pass directly over the subject, while by-passing courses are those that do not. The second study was concerned with one further question: Is the helicopter localized more accurately at 100-110 feet altitude than at lower altitudes (20-60 feet)? The third study was concerned with two additional questions: - a. Does wearing a steel combat helmet reduce accuracy of auditory localization? - b. What is the range of audibility of the UH-1B, i.e., at what range is it detected (and localized)? Several incidental questions, not listed here, were also investigated in the course of these studies; these questions will be discussed later in the results section. Fig. 1. UH-1B HELLICOPTER FLYING NAP-OF-THE-EARTH OVER JOLON VAL! EY, HUNTER-LIGGETT MILITARY RESERVATION #### METHOD AND PROCEDURE #### Flight Plans and Terrain The first and second studies, conducted at HLMR, used three flight plans, each of which included linear-homing (or near-homing) and linear by-passing sections. The UH-1B helicopter pilot was instructed to fly nap-of-the-earth during the first study. Nap-of-the-earth flight is illustrated in Figure 1. The altitude during these flights varied from 20 to 60 feet above the surface, the higher altitude being required to pass over the highest trees in this sparsely wooded area. During the second study the altitude was maintained between 100 and 110 feet above the surface. The terrain was a relatively flat mountain valley, situated between two mountain ranges which ran in a general northwest-southeast direction. The ground was lightly wooded with scrub oak, which was thickly hung with Spanish moss. The mountain range to the west was less than one mile distant, and the range to the east was about one and one-half miles away. Twelve ground-to-air panel markers were laid at positions previously surveyed, to provide marks at fixed angles and distances (0.5 km., 0.75 km., 1.00 km., and 2.00 km.) from the observation position. See Figures 2, 3, and 4 for illustrations of positions and flight plans. The three flight plans provide the same azimuth-marking points, but different orders of occurrence and directions of flight. #### Aircraft The UH-1B is a Bell helicopter powered by a gas turbine, with a main rotor that has two 21-inch chord blades and a 44-foot rotor diameter; a tail rotor measuring 8 feet 6 inches from tip to tip; and a tail-pipe directed toward the rear. All of these, along with the engine and gears, contribute to its total noise output. The UH-1B noise spectrum has a negative slope, with several relative maxima and the absolute maximum below 100 cycles per second. The over-all sound-pressure level is not markedly different from front to rear or side to side (1). In the experiments described here, the helicopter was operated by a pilot and a co-pilot, with the co-pilot acting as signal-man, reporting by radio to the subject position precisely as the aircraft passed over the ground-to-air panel markers. The co-pilot reported, "Mark C" (or the letter designating the panel position), followed by the heading of the aircraft in degrees and its speed in knots. Fig. 2. FLIGHT PLAN 1 Fig. 3. FLIGHT PLAN 2 THE RESERVE OF THE PERSON T Fig. 4. FLIGHT PLAN 3 #### Subjects The subjects were U. S. Army riflemen with normal hearing and visual acuity, as indicated by Profile 1 in their medical records. Twenty men served in Study I and 18 in Study II, but, because of instrumentation difficulties, Study I yielded only ten complete data records, and Study II yielded only 13 complete records for statistical analysis. #### Equipment and Procedure In order to record the subjects' judgment of target location, the Human Engineering Laboratories designed and
constructed an azimuth table, which could be staked into position. The azimuth table pointer was free to rotate 360° above a clear plastic top. Photo data were recorded with a Bell and Howell Autoload 16-mm. movie camera, set for single-frame operation. The camera had a Wollensak 13-mm. f/1.2 T.V. Raptar Wide-Angle lens. This camera was mounted three feet below the clear plastic top so it could photograph the angular pointer position when a remote switch was operated. The pointer position was recorded on signal from the co-pilot as the aircraft passed over the ground-to-air panel markers. Each subject served on one run with one flight plan only. He was instructed to continue to point to the position of the aircraft during the entire run, whether or not the aircraft was audible. He was also required to report whenever the aircraft passed in or out of his hearing range. The subject position was so screened by vegetation that the aircraft was obscured from vision at all times except during turns near the subject position. Thus the subject had to rely on auditory localization exclusively. Each subject's record consisted of 12 sequential photographs, which could be converted into angular error scores. #### RESULTS AND DISCUSSION Mean Errors, Flight Direction, and Range For all the 23 subjects and all 12 points average (absolute mean) angular error was 9°, with a 95 percent confidence interval ranging from 7° to 12°. Such results this is a large mean error, it is small compared to the error of 20° found by Eyring in his study of jungle acoustics (2). It also proved to be smaller than the mean error found in a subsequent study in the noisier environment of Aberdeen Proving Ground. In comparisons of homing versus by-passing courses, and of approaching versus departing courses, there were no significant differences in angular accuracy.* There was a tendency for errors to be greater on approach than on departure (a mean of 10° versus a mean of 7°), but this difference was not statistically significant. Approaching and departing runs did differ significantly in the incidence of reports by subjects that they could not hear the aircraft. The great majority of such reports occurred on departing runs, and at the two points which were two kilometers distant. But mean errors at these points were no greater than at other points. Therefore, the report "cannot hear" at ranges of one or two kilometers was not related to a significant decrement in performance. #### Range Range, from 0.5 kilometers to 2.0 kilometers, was not significantly related to error size.** In these two studies the limited range kept the helicopter within normal hearing range but did not provide much variation for statistical comparisons. Therefore, it seemed advisable to consider the use of larger ranges, perhaps even some extending beyond normal hearing limits, in a later study. ^{*} As shown by one U-test and one analysis of variance. ^{**} Approach versus departure and ranges (three) were compared in a blocks-by-rows-by-columns (13x2x3) analysis of variance on the 13 subjects of Study I. Range was rechecked in a row-by-column (23x4) analysis of variance using data from all 23 subjects of Studies I and II. The state of the state of the state of the state of #### Altitude There was no significant difference in azimuth accuracy on extremely low-level contour flying (20 to 60 feet altitude) as compared with the higher-altitude (100 to 110 feet) contour flights.* While the results may be rather different with regard to visual detection, localization, and firing accuracy, this lack of difference between the minimum contour rights and the source with the higher level might be preferred tactically, if other considerations are equal. #### Interfering Noise During the collection of data for Study I, there was coincidental firing from 90-mm. guns at approximately four-fifths mile distance on five out of the 13 runs. On these five runs the firing was at a moderately rapid rate, involving several rounds per minute. Though this condition was not planned, it provided an opportunity to gather data related to combat conditions, so these instances were recorded and later subjected to statistical analysis, for comparison with the runs during which there was no such interference. Average errors were larger for these five subjects. The absolute mean error of the interfering-noise group was 12°, while the absolute mean error of the quiet group was 8°. However, this difference was not statistically significant, ** so it could reasonably be concluded that the noise from gunfire made no difference in accuracy of angular localization. ^{*} t-test of significance of difference between means for low-level flight data versus higher-level flight data. ^{**} t-test of significance of difference between means. A -- Subject position B -- Apparent position C -- Actual position, marking point E, K, or H Fig. 5. SCHEMES ILLUSTRATING PROBLEM OF APPARENT POSITION VERSUS ACTUAL POSITION AT A MARKING POINT SUCH AS E, K, OR H #### Apparent Versus Actual Position One intriguing question concerned the relatively slow velocity of sound over the distances involved in the by-passing courses only. When the helicopter is passing along a path which cuts over the mark at a radius of one kilometer, approximately three seconds are required for its sound to reach the subject. Yet. with transmission of control signals by radio plus the experimenter's reaction time in photographing the pointer position, the delay in recording is no more than one-half second. These facts suggest that the subject may be responding to sound emitted two or three seconds before the aircraft arrives over the mark, i.e., to its apparent position, rather than to its actual position. This apparent position can be determined mathematically from the helicopter's velocity and direction of flight, the known mark position, and the velocity of sound. Figure 5 illustrates the nature of the problem. The left illustration shows the general scheme for a problem involving a marking position such as E, K, or H (represented by C in Figure 5; see flight plans) as the helicopter flies eastward, by-passing the subject at A. The co-pilot gives the signal to mark the pointer position as he passes over the mark panel at C. However, the sound arriving at A as the photograph is taken is the sound emitted two to three seconds previously when the helicopter was over point B. While the helicopter travelled the distance s to the marking point, the sound travelled the distance BA to the subject. Similarly, the right illustration shows the general scheme for a problem involving the same marking position (E, K, or H) but with a westward direction of flight. The sound that reaches the subject at point A when the helicopter is passing over the mark at C, was actually emitted at B. The question then becomes: is the subject responding to the actual position (which would require him to anticipate the movement path of the stimulus), or is he responding to the apparent position (responding to the sound at the moment, and therefore trailing the helicopter in flight)? Apparent positions were calculated for the six mark positions and the two directions of flight, and for velocities of flight ranging from 45 to 80 knots. (See Appendix for method of solving this problem mathematically.) As indicated in Table 1, the differences between actual locations and apparent locations varied from two to six degrees at the different marks and velocities. When the question of what subjects were responding to -- actual position or apparent position -- was tested statistically, the distribution of errors favored the apparent position (p <0.0005).* This finding suggests that subjects were responding to the point from which the sound was emitted, rather than anticipating the direction of travel and velocity of the aircraft; thus their estimates trailed the aircraft somewhat more at higher velocities and greater distances. ^{*} Sign test for significance of difference. TABLE 1 Apparent Positions Calculated for Two Different Flight Directions and Various Speeds on By-Pass Course-Marking Points | | | | 4 | Actual Lo | cations | | | | |-------|-----------|--------------------|------------------|--------------------|-------------|-------------------|-------------------|--| | :1 | | H | K | E | G | L | F | | | | | 8°W | 7 ⁰ E | $3^{\mathbf{o_E}}$ | 60°W | 75 ⁰ W | 71 ⁰ W | | | 7 | FLIGHT | Apparent Locations | | | | | | | | ac/k* | DIRECTION | Н | К | Е | G | L | F | | | 4= | E | 12W | 5E | 0 | 63W | 78W | 74W | | | 45 | W | 5W | 10E | 6E | 56W | 73W | 68 W | | | 50 | E | 12W | 4E | 1W | 63W | 79W | 74W | | | 50 | w | 4W | 11E | 6E | 56W | 72W | 67W | | | 55 | E | 12W | 4E | 1W | 63W | 79W | 75W | | | วย | w | 4W | 11E | 7E | 56W | 72W | 67W | | | | E | 13 W | 4E | 1 W | 64W | 79W | 75W | | | 60 | w | 4W | 11E | 7E | 55W | 72W | 67W | | | | E | 13W | 3E | 2W | 65W | 80W | 75W | | | 65 | W | 3W | 12E | 7E | 55W | 71W | 66W | | | | E | 14W | 3E | 2W | 65W | 80W | 76W | | | 70 | w | 3W | 12E | 8E | 54 W | 71W | 66W | | | | E | 14W | 3E | 2W | 66W | 80W | 78W | | | 75 | w | 2W | 12E | 8 E | 54W | 71W | 66W | | | | E | 14W | 2E | 3W | 66W | 81 W | 76W | | | 80 | w | 2W | 13E | 8E | 54W | 70W | 65W | | ^{*}Vac/k = speed of aircraft in knots. #### STUDY III #### METHOD AND PROCEDURE Concrat Description こうしょう こうしょうしゃ こうしゅう こうしょう ないない The previous studies had shown that angular accuracy is not significantly affected by these variables: - a. homing versus by-passing courses; - b. approaching versus departing courses; - c. different ranges up to two kilometers; and - d. extremely low-level (20-60-feet altitude) versus low-contour (100-110-feet altitude) flying. In addition, there were no significant differences in azimuth accuracy on runs during which there was considerable interfering noise from 90-mm. firing at less than one-mile distance. Evidence about accuracy
at greater ranges remained to be collected, along with data for other terrain and environmental conditions. The third study was planned to clarify the effect, if any, of the combat helmet on the soldier's azimuth accuracy in tracking the UH-IB helicopter. Also, greater ranges (up to six kilometers) were studied, to determine how range affects azimuth accuracy. These questions about the effects of combat helmet and greater ranges were examined experimentally with an UH-1B helicopter and 18 subjects. The helicopter was required to follow a prescribed gently curving course, flying low-contour and/or nap-of-the-earth. The flight path passed over ground panel markers at ranges of 1, 2, 3, 4, and 6 kilometers from the observation point (Fig. 6). The helicopter made a "round trip" over the markers, turning and reversing direction after one pass over them. Subjects were required to wear the helmet for one pass (five observations) and remove the helmet for the return trip (vice versa on alternating subjects). Subjects tracked the vehicle continuously, and photographic readings of the pointer position were taken on signal from the crew chief (in the helicopter) as the aircraft passed over the markers at the fixed positions. Each subject thus provided ten photographic readings, including five different ranges and two different conditions (helmet versus no-helmet). Fig. 6. LOCATION OF MARKING POINTS AND FLIGHT PLAN FOR STUDY III, ABERDEEN PROVING GROUND, MD. #### Terrain and Environment The area used in this study was a crescent-shaped tract lying over the three-mile straightaway course and part of the cross-country course in the industrial area of Aberdeen Proving Ground, Md. The ground was gently rolling and moderately wooded. During the experiment, normal automotive tests were suspended, and there was very little traffic on the straightaway. However, there was intermittent traffic on the cross-country course, which passed very near the subject position, and there were electric and diesel trains on the railroad passing 1250 meters northwest of the subjects' position. This traffic on the railway and on the cross-country course proved to be sources of considerable interfering noise, which will be discussed below. The weather was humid on the mornings when tests were conducted, and some of the data were collected during light rain. The state of s #### Aircraft The UH-1B used was described in the CDEC studies report. A crew-chief replaced the co-pilot, and he was responsible for reporting precisely when the aircraft passed over the marker panels. He also reported heading in degrees, and speed in knots, at each point. Altitude varied generally between 60 and 80 feet, never rising above 100 feet. Speed was permitted to vary between 45 and 80 knots. #### Subjects Talkading Later Street The subjects were 18 men, 14 of whom came from a tank platoon, with four others from laboratory assignments. Because of the probability that some of these men had suffered hearing loss connected with their duties, all subjects were given audiometric examinations with the Rudmose audiometer. Twelve of the 14 tank crew members showed specific hearing loss in excess of 20 decibels, which was arbitrarily chosen as the criterion level. Two of the other subjects showed similar impairment, so that a total of 14 of the subjects showed hearing loss (within specific ranges) in one ear or the other. Of the 18 subjects used, two experienced such a high level of interfering noise during half of each of their runs that half of each set of data was discarded, and these two halves were arbitrarily pooled and treated as one subject, reducing the total to 17. #### Equipment and Procedure The photo data was collected with the same camera mounted on the azimuth table that was described in Studies I and II. Each subject served on one run only, yielding ten readings: five on approach and five on departure from the vicinity of the subject position. The subject position was sufficiently screened by terrain the one-kilometer point, and briefly during the turn-around on that end. #### RESULTS AND DISCUSSION Mean Errors, Flight Direction, and Range TENERAL CONTRACT WAS PROPERLY AND A STATE OF THE PROPERTY T The mean error for all readings and all points was 420, a very large error in comparison with the 90 mean error found at HLMR, CDEC. This difference was attributed to the fact that the helicopter in this experiment proceeded out as far as six kilometers, though it was rarely audible even at four kilometers. Including the points over which the helicopter was reported as heard by the subject. but not the far points at which the aircraft was inaudible, the mean error was 180. The rapid increase in error size between two- and three-kilometers range (Fig. 7) is paralleled by the sharp drop in number of subjects who report the helicopter audible at three and four kilometers (Fig. 8). Less than 50 percent of the subjects were able to hear the aircraft beyond three kilometers. Neither error size nor audible range was significantly different for approach versus departure. * When errors were calculated for each range separately, a distinct trend emerged, a perfect negative correlation between range and error size (Table 2). This decrease in error size as range increases contrasts with results from the previous CDEC studies, in which range effects were more limited, although it is consistent with the earlier work by Eyring (2), who reported such a negative relationship. #### Helmet Effect The steel combat helmet had no significant effect on the accuracy with which the subjects localized the noise source.** ^{*} t-test on errors for approach versus departure. ^{**} t-test on error for helmet condition versus no-helmet condition. Fig. 7. MEAN ABSOLUTE ERRORS AT DIFFERENT RANGES Fig. 8. NUMBER OF SUBJECTS REPORTING AIRCRAFT AUDIBLE AT DIFFERENT RANGES, DURING APPROACH AND DEPARTURE TABLE 2 Mean Absolute Errors at Different Ranges (Including only observations when aircraft was reported audible.) | | errors at nt Ranges Mean | |----|---------------------------| | N | Mean | | | | | 1 | 30 | | 11 | 12 ⁰ | | 25 | 13 ⁰ | | 34 | 24 ⁰ | | - | 11
25 | #### Interfering Noise こと 日本のようない とうとうからいたい In the previous CDEC data, interfering noise from 90-mm. gunfire did not affect the accuracy of auditory localization. However, results from the Aberdeen Proving Ground (APG) data, with interference from other noisy vehicles, were markedly different. The proximity of the subjects' position to the APG cross-country vehicle test course made some traffic noises inevitable as weather improved. The passage of tanks, trucks, and armored personnel carriers was noted on the subject protocol in each case. Where such an interfering noise occurred, the reading was compared with another reading taken for the same subject at the same point. Thus the subject could serve as his own control in a one-tailed t-test of the prediction that the interference of engine and other vehicle noises would increase errors. The mean error with such masking noises was 18°. The mean error without such interfering noises was 6°. This difference was significant.* Considering these data in the light of the previous information, one may conclude that impulse noises, as of firing, are less disturbing to auditory localization of a vehicle than noise from other vehicles, which may produce continuous masking. ^{*} t-test of significance of difference between correlated means, significant at 0.05 level. #### Hearing Defects 出。"行行法"的"加克的加克"的"自己是ACCEPTED TO EXTENDED There were four subjects with normal hearing and 14 subjects with hearing deficiencies, according to the criterion chosen. Since the subjects faced in a general northwest direction, left-side errors were scored westerly, and right-side errors were scored easterly. Table 3 shows that those subjects with deficiencies in the right ear using predominantly left-side hearing made a majority of errors in the westward direction; on the other hand, those subjects with deficiencies in the left ear, and thus better hearing on the right side, were equally apt to make east errors and west errors. This table excludes two subjects whose errors were evenly divided between east and west. These two subjects also had hearing loss in the left ear. The arrangement shown is not significantly different from chance expectation.* TABLE 3 Sidedness of Hearing Damage Related to Direction of Error | Majority of Errors | Defect in
Right Ear | Defect in
Left Ear | |--------------------|------------------------|-----------------------| | West | 5* | 5* | | East | 1* | 5* | ^{*} Each group had one subject with normal hearing. The subjects with hearing deficiencies also showed a different magnitude of error performance. The mean error of this group was 20°. The four subjects with normal hearing showed a mean error of 10°. The difference between the normal and hearing-loss group was statistically significant.** These data suggest that specific hearing deficiencies may not only affect the magnitude of errors, but their direction as well. However, it is difficult to explain why subjects with right-ear defect showed mainly left-side errors, while those with left-ear deficiencies showed no predominance of errors in either direction. Individual directional biases may be contaminated here with other possible sources of bias. ^{*} Fisher's exact method yielded p = 0.189. ^{**} t-test for significance of difference indicated p <. 01 level. #### GENERAL DISCUSSION The range of absolute errors in these studies was greater than 90°. The tne targe effects of certain variables which were manipulated. However, the largest part of this variation could be attributed to the aircraft passing out of audible range of the subject, ordinarily beyond two or three kilometers in distance. The greatest errors were thus made when the aircraft was far from the subject and, therefore, inaudible. Within the audible range for
individual subjects, the trend was reversed: angular errors were greater at closer ranges. Within the audible range, the mean of errors was 9° in the first two studies and 18° in the third study. This difference of 9° between the HLMR data and the APG data could be attributed to two significant factors found in the APG study, and perhaps not entirely excluded in the HLMR studies. These two factors were: (1) masking from close passage of other vehicles, such as armored personnel carriers, tanks, and trucks; and (2) subjects' hearing defects. These data suggest that specific hearing deficiencies may not only affect the magnitude, but also the direction, of errors. However, the data on direction are insufficient to allow a firm conclusion. There is no ready explanation for the fact that subjects with right-ear defect made mostly left-side errors, whereas subjects with left-ear defect made errors in both directions. Individual directional biases may be reflected here, and they may be contaminated by other undetermined sources of bias or consistent error. Such an undetermined source of bias was indicated by the finding that, in all three studies, there was a general tendency for more errors to be in a westward direction than in an eastward direction. This finding could not be accounted for by prevailing winds, as they were nonexistent during most of the runs in which this bias was significant. This westward bias was more pronounced in the HLMR data than in the APG data.* These data have several implications for future research. In field studies such as these, some interference from extraneous noises is to be expected. However, insofar as these masking noises have not been well-controlled heretofore, some controlled introduction of masking noises, both impulse and continuous, may be advisable in future experiments. THE RESERVE OF STREET ^{*} Separate binomial probabilities were calculated and found to be significant for nine of the 23 subjects and at nine of the 12 marks in the HLMR data (p <0.01 or <0.001). In the APG data, the same trend emerged, but it was found to be statistically non-significant when only points within audible range were considered. The high proportion of subjects with hearing loss, as indicated by audiometric examinations in the third study, pointed up the general need for such examinations in connection with auditory studies. The use of military subjects, and the possibility of significant differences in hearing-defect cases make such examinations mandatory. Another suggestion refers to pointing behavior -- which is the main dependent variable in these statues. We do not know now accurately a group of minimary subjects can point to a target or signal. This pointing is rather different behavior from that required in aiming and firing a weapon. Pointing behavior may be relatively inaccurate even if the signal is visible. Future studies may be undertaken to determine subjects' ability to point toward auditory and/or visual signals. Such measurements, taken in advance of data collection in an auditory localization study, should yield information on individual consistency or bias. #### **SUMMARY** This report gives the results of three studies of accuracy of auditory localizations. In each study the sound source was an IIH-IR heliconter in low-level flight and the subjects on the ground used unaided nearing to localize the aircraft noise. Their azimuth pointing was recorded photographically as the aircraft passed over previously fixed markers. Mean absolute angular error was 9° in the first two studies combined, and 18° for observations while the aircraft was audible in the third study. Less than 50 percent of the subjects reported hearing the aircraft beyond 3 kilometers (km.), and no subject reported hearing the aircraft beyond 4 km. Errors became very large beyond 3 km.; but, within audible range, angular errors were smaller at greater ranges. Absolute error size was not significantly affected by: - a. nap-of-the-earth (20-60-feet-altitude) versus low-contour (100-110-feet-altitude) flying; - b. approaching versus departing courses; - c. homing versus by-passing courses; - d. interfering noise from 90-mm. gunfire; - e. wearing combat helmets. While gunfire did not mask the helicopter noise, that is, the helicopter noise was continuously audible and could be localized during gunfire, the passage of other vehicles, such as trucks and tanks, did mask the helicopter noise and resulted in larger errors. Subjects who had specific hearing losses also showed significantly larger errors than subjects with normal hearing. #### REFERENCES - 1. Bell Helicopter Company, Fort Worth, Texas. HU-1 Acoustical Measurements. Technical Data, Report No. 299-099-192, - 2. Eyring, C. F. Jungle Acoustics. OSRD Report No. 4699, Rutgers University, New Brunswick, N.J., February 1945. #### **APPENDIX** Method of Calculation of Apparent Position, Given Speed, Direction, and Actual Position a. The case in which an aircraft is flying east over a marking point, such as K, E, or H (denoted below as C). Given: 1, x, $v_{a/c}$, v_{s} , angle c, d. The aircraft travels from B to C, a distance $s = v_a/c$, while the sound travels a distance, $v_s \cdot t$, to the subject. Position By the law of cosines: $$(v_s \cdot t)^2 = (v_a \cdot t)^2 + d^2 - 2 \cdot v_{a/c} \cdot t \cdot d \cdot \cos c$$ $(v_s^2 - v_{a/c}^2)t^2 + 2v_{a/c} \cdot d (\cos c)t - d^2 = 0$ Solving for t: formula: $$\frac{-2 \, v_{a/c} \cdot d \, (\cos \cdot c) + \sqrt{(2 \, v_{a} \cdot d \cdot \cos \cdot c)^{2} - (4) \, (v_{s}^{2} - v_{a}^{2}) \, (-d^{2})}}{2(v_{s}^{2} - v_{a}^{2})}$$ $$s = v_a \cdot t$$ and solving for a by the law of sines: $\sin a = \sin c$ a = arc sin a b. The case in which an aircraft is flying west over the same point conforms to the scheme below, and has a very similar solution: Given: same as above. The aircraft travels from B to C, a distance, $s = v_a \cdot t$, while the /c sound travels a distance, $\mathbf{v_s} \cdot \mathbf{t}$, to the subject. position By the law of cosines: $$(v_s \cdot t)^2 = (v_a \cdot t)^2 + d^2 - 2 \cdot v_a \cdot t \cdot d(\cos \cdot c)$$ Solving for t: $$(v_s^2 - v_{a_j}^2) t^2 + 2 v_{a_j} \cdot d \cdot (\cos \cdot c) \cdot t - d^2 = 0$$ By the quadratic-equation formula: $$t = \frac{-2 \text{ v. d } (\cos. c) + \sqrt{(2 \text{ v}_a \text{ d} \cdot \cos. c)^2 - 4(\text{v}_s^2 - \text{v}_a^2) (-\text{d}^2)}}{2 (\text{v}_s^2 - \text{v}_a^2)^2}$$ Then: $$s = v$$ The second secon and, solving for a by the law of sines: $$\sin a = \frac{\sin a}{v_s \cdot t}$$ a = arc sin a ## DISTRIBUTION LIST | Headquarters | Commendation | | | - | |--|---------------------------------------|------|--|-----------------| | U. S. Army Materiel Command | Commanding Officer | | Headquarters | | | Washington 25, D. C. | USA Medical Research Laboratory | | U. S. Army Electronics R&D Labor | | | ATTN: AMCRD-RS | Fort Knox, Kentucky | | Fort Monmouth, New Jersey | atory | | | 1 ATTN: Psychology Division | 1 | ATTN: SELRA/GDA | | | AMCRD-DE | 1 Library | î | SELRA/GDA | 1 | | At a security winterfiel (mmmand Dec. 1 | Director of Research | | II G GOOD TO THE I | | | Aberdeen Proving Ground, Md. | U. S. Army Avn HRU | | U. S. CONARC | | | Bldg. 3072 | 1 P. O. Box 428 | | Fort Monroe, Virginia | 1 | | | Fort Duckey At | | | • | | U. S. Army Test & Evaluation Comma | Fort Rucker, Ala. | | USACDC Liaison Office | | | Aberdeen Proving Ground, Md. | nd ATTN: Librarian | 1 | Aberdeen Proving Ground, Md. | | | Bide 3071 | _ | | Bldg. 3071 | | | 5.2g. 00/1 | Commanding Officer | | | 1 | | De I D Internal | U. S. Army Artillery CD Agency | | Commanding Officer | | | Dr. J. E. Uhlaner | Fort Sill, Oklahoma | 1 | Harry Highand Labor | | | Director, Research Laboratories | | • | Harry Diamond Labs | | | U. S. Army Personnel Research Office | Commandant | | Washington 25, D. C. | | | | U. S. Army Artillery & Missile Scho | • | ATTN: Tech Reference Sec | 1 | | | | oof | | | | U. S. Army Personnel Research Office | ATTN: Director Deut 4 m | | Commanding Officer | | | Washington 75 D C | | 2 | Directorate of Medical Research | | | | | | Edgewood Arsenal, Md. | | | Director Arms Bassaut on | Commanding General | | ATTN: Psychol & Human Engr Br | _ | | Director, Army Research Office | U. S. Army Missile Command | | ISA Prestruction Engr Br | 1 | | Office, Chief Research & Development | Redstone Arsenal, Ala. | | USA Environmental Hygiene | | | wasnington 25, D. C. | ATTN: Research Library | 1 | Agency | 2 | | ATTN: Human Factors Division | | 1 | | | | | ton (Mr. Granam) | 1 | Commanding Offi | | | Director | Headquarters | | Commanding Officer | | | U. S. Army Profince Post & Dev Laus | 1: 0 inner term | | Frankford Argenni | | | Fort Belvoir, Virginia | U. S. Army Modulity Command | | Philadelphia 37, Pa. | | | ATTN: I ibram. | Warren, Michigan | 1 | ATTN: SMUFA-1031/65-1 | | | Dumon Dares | | | (HF Engr Br) | | | numan Factors Branch 1 | | | Library (Bldg. 40) | 1 | | Commander - Occ | U. S. Army Detroit Arsenal | | Endrary (Blug. 40) | 1 | | Commanding Officer | Warren, Michigan | 1 | Commanding General | | | U. S. Army Infantry Agency | <u>-</u> | - | Il S Amma M | | | Fort Benning, Ga. | Commanding General | | U. S. Army Munitions Command | | | | U. S. Army Tank-Automotive Comman | | Picatinny Arsenal | | | U. S. Army Infantry | Warren, Michigan | nd | Dover, New Jersey | | | Human Research Unit | ATTN: SMOTA-RRS | | ATTN: AMSMU-VC2 (Mr. P. Strauss | a) 1 | | Fort Bonning Co | BMOTA-RRS | 1 | | ·/ - | | 1 of themming, Ga. | Commends | | Director of Research | | | Commanding Officer | Commanding General | | Training Methods Division | | | USA Air Defense CD Agency | U. S. Army Weapons Command | | Human Resources Research Office | | | Fort Diag Trans. | Rock Island Arsenal, Illinois | | 300 North Washington Street | | | Fort Bliss, Texas | ATTN: AMSWE-TE | i
 Alexandria, Va. | | | D | AMSWE-0210 mc | ī | -Monandia, va. | 1 | | Director of Research | | _ | Commendate | | | USA Air Defense CD Agency | U. S. Army Leadership Human Rsch U | 1-de | Commanding General | | | Human Research Unit | P. O. Box 787 | | Natick Laboratories | | | Fort Bliss, Texas | Presidio of Montonous Gauss | _ | Natick, Mass. | | | • | oz Monterey, Cani. | 1 | ATTN: Environmental Protection | | | Commanding Officer | Commanden a core | | Possessi Divi | 1 | | U. S. Army Armor CD Agency | Commanding Officer | | 21,121011 | 1 | | HOTT Know V | Medical Equipment Development Lab | | Commanding Officer | | | 1 of thiox, kentucky | Fort Totten | | Springfield Armory | | | tt a | Flushing 59, New York | 1 | Springfield, Mass. | | | U. S. Army Armor | - | - | ATTN: I Was and | | | Human Research Unit | Commanding Officer | • | ATTN: LWDB (PC) | 1 | | Fort Knox, Kentucky 1 | U. S. Army Research Office | | (Manager 111 to 1 | | | • | Box CM, Duke Station | 1 | Director, Walter Reed Army | | | Dm. G. 1 1 | Durham N C | | Institute of Research | | | Dr. Calvin W. Taylor | • | | Walter Reed Army Medical Control | | | Dept of Psychology | Commanding Officer | | ······································ | | | Iniuania | Yuma Test Station | 4 | ATTN: Neuronauchiama Di | | | University of Utah | Yuma, Arizona | | - L-1 wort à DIA' | 1 | | Salt lake Cian | ATTN: STRVT-Cpp | 1 | I S Manine Z | | | Take City, Utah 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | I.S. Marine Liaison Offic | ce | | | | | Bldg 3071, APG | 2 | | Commanding General
JSACDC Combined Arms Grou | ıp | Institute for Defens
1666 Connecticut Ave | | | | |--|---------|---|------|--|----| | Fort Leavenworth, Kansas | 1 | Washington 9, D. C. | , | | | | ort goardinorting handas | . • | ATTN: Dr. Orlansky | | 1 | | | Commanding Officer | | Commanding Officer & Director | | American Institute for Research | | | Vatertown Arsenal | | Naval Training Devices Center | | 1808 Adams Mill Road, N.W. | | | Vatertown 72, Mass, | | Port Washington, Long Island | | Washington 9, D. C. | | | TTN: AMXMR-9251 | 1 | New York | | ATTN: J. T. Hudson | 1 | | Commanding Officer | | ATTN: Dr. Kenneth Thompson | 1 | American Institute for Research | | | | | | | • | | | Watervliet, New York | | Office of Naval Research Br Ofc | | Pittsburgh 32, Pa. | | | ATTN: SWEWV-RDD (Mr. Waugh) | 1 | 495 Summer Street
Boston, Mass. | | ATTN: Library | 1 | | Commanding General | | ATTN: Dir, Bibliographical Service | | American Institute for Research | | | White Sands Missile Range | | Proj., Inst. for Appl. Exper. | , | 8 West 41st Avenue | | | as Cruces, New Mexico | | Psychol, North Hall | | San Mateo, Calif. | | | ATTN: Technical Library | 1 | Tufts College | | ATTN: Librarian | 1 | | Mr. R. Courtney | 1 | Medford 55, Mass. | 1 | | | | • | | | | American Machine & Foundry Co. | | | Ord Liaison Office | | U. S. Navy Electronics Laboratory | | 11 Bruce Place | | | Army Combat Dev Experimentation Ct | r | San Diego 52, Calif. | _ | Greenwich, Conn. | | | Fort Ord, Calif. | | ATTN: Ch, Human Factors Division | 1 | ATTN: Human Factors Supv | 1 | | ATTN: LtCol M. D. Burkhead | 1 | | | | | | | | RADC (RASH) | | The Franklin Institute | | | Commanding General | | Griffies AFB, New York | 1 | 20th St. & Ben Franklin Parkway | | | U. S. Army Combat Development Con | mand | | | Philadelphia 3, Pa. | | | Ft. Belvoir, Virginia | _ | Hq ESD (ESAT) | | ATTN: Electrical Engr Library | 1 | | ATTN: CDCRE-C (Dr. M. I. Kurke) | 1 | L. G. Hanscom Field | | ITT I shawatanian | | | to D. A A cost o Phone Board | | Bedford, Mass. | 1 | ITT Laboratories
500 Washington Avenue | | | U. S. Army Arctic Test Board | | A3473 (A34A) | | Nutley 10, New Jersey | | | U. S. Army R&D Office, Alaska | | AMD (AMA) Rrooks Air Force Rase Texas | 1 | ATTN: Human Factors Group | | | APO 731 Seattle Washington
ATTN: Dr. Emmoran B. Cobb | 1 | ATONER ATT ENTER MARE, TEXAS | • | The state of s | - | | ATTN: Dt. Elimioran B. Cobb | • | 6570 AMRL (MRP) | | Martin Company | | | U. S. Army R&D Office, Panama | | Wright-Patterson AFB, Ohio | 2 | Life Sciences Dept., Engineering Di
Baltimore 3, Md. | v. | | P. O. Drawer 942 | | Civil Aeromedical Research Institute | • | ATTN: Dr. Carl C. Clark | 3 | | Ft. Clayton, Canal Zone, Panama
ATTN: Dr. D. A. Dobbins | 1 | Federal Aviation Agency | - | | , | | | | Aeronautical Center | | The Research Analysis Corporation | | | U. S. Military Academy | | P. O. Box 1082 | | 6935 Arlington Road | | | MP&L | | Oklahoma City, Okla. | | Bethesda, Md. | | | West Point, New York | | ATTN: Psychol Br | 1 | ATTN: Library | 1 | | ATTN: LtCol H. A. Buckley | 1 | Defense Desumentation Conton | | Ritchie & Associates, Inc. | | | | | Defense Documentation Center Cameron Station, Va. | 10 | 44 Ludlow Street | | | Technical Library | | Cameron Station, va. | 10 | Dayton 2, Ohio | 1 | | Aberdeen Proving Ground, Md. | 1 | Office of Technical Services | | Dayton 2, Oldo | • | | Bldg, 313 | 1 | Department of Commerce | | Dr. D. W. Conover | | | Technical Library, Branch #3, D&PS | | Washington 25, D. C. | | Mail Zone: 6-169 | | | Aberdeen Proving Ground, Md. | | ATTN: Acquisitions Section | 2 | General Dynamics/Convair | | | Bldg. 400 | 1 | • | | P. O. Box 1950 | | | 2448, 100 | | Dr. William Lybrand | | San Diego 12, Calif. | 1 | | Hq, USA Medical R&D Command | | Special Operations Research Office | | | - | | Main Navy Building | | The American University | | Mr. Wesley E. Woodson | | | Washington 25, D. C. | | 1405 Massachusetts Ave., N.W. | | Mail Zone: 594-50 | | | ATTN: NP & PP Rsch Br | 1 | Washington 16, D. C. | 1 | General Dynamics/Astronautics
5001 Kearny Villa Road | | | Commanding Officer | | Serials Unit | | San Diego II, Calif. | 1 | | Commanding Officer Naval Research Laboratory | | Purdue University | | | • | | 4th & Chesapeake Sts., S. W. | | Lafayette, Indiana | 1 | Hughes Aircraft Company | | | Washington 25, D. C. | | 22.2. | | Florence Ave. at Teal St. | | | ATTN: Code 5120 Engr Psychol | 1 | University of Michigan | | Culver City, Calif. | | | Code 5143A Sys Analysis | 1 | Ann Arbor, Michigan | | ATTN: Engineering Library | 1 | | · | | ATTN: Dr. Leonard Uhr | 1 | | | | Mr. Leo Bricker | | | | | | | | 19 gar | Minneapolis-Honey | well | Regulator Co | | | Personnel Subsystems Man | | | | | | | Sylvania Electric Produc | cts, li | | | | | | 189 B. Street | | ATTN: Mr. Henry | | nann, Sr. HF Engr | | | Needham Heights 94, Mass | 3. | 1 600 2nd Street No | rth | | | | · · · · · · · · · · · · · · · · · · · | | Hopkins, Minnesot | а | 1 | | 600 2nd Street North Hopkins, Minnesota 1 Service of the servic ř | UNCL | f ccraft f action and acting | 3. · · oustics | | UNCE | 1. \ircraft | 2 Detection and
Tracking | 3 Acoustics | | |------------------|---|--|---|------------------
---|---|--|--| | AD Accession No. | U. S. Army Hun an Engineering Laboratories Aberdeen Provin; Ground, Maryland AUDITORY LOCALIZATION OF A HELICOPTER FROM GROUND POSITION | Robert W, Baue: July 1963 Technical Memc randum 15-63 Unclassified AMCMS Code 51 62. 12, 660. 08 | Three stuties of unaided auditory localization of a belicopter are summarized. In each, an UH-1B belicopter in flight was the sound source and was localized by subjects on the ground. Ab solute mean angular errors of different groups and under different conditions ranged from 80 to 240 and more, with smaller errors found under quieter conditions and at greater target ranges. Error size was not significantly affected by: flight direction; altitude changes from low nap-of-the-earth (20-60 feet) to 1 sw contour (100-110 feet); interfering noises from 90-mm. g infire; or wearing a combat helmet. There were significan differences associated with interfering noise from passing w hicles and with subjects auditory acuity. | AD Accession No. | U. S. Army Hu nan Engineering Laboratories Aberdeen Provi to Ground. Marpland | AUDITORY LO ALIZATION OF A HELICOPTER
FROM GROUNI POSITION | Robert W. Baut r
Technical Mem mandum 15-63 Unclassified
AMCMS Code 5:62,12,660.08 | Three stu lies of unaided auditory localization of a helicopter are immarized. In each, an UH-1B helicopter in flight was the sound source and was localized by subjects on the ground. Al solute mean angular errors of different groups and under different conditions ranged from 8° to 3.4° and more, with smaller errors found under quieter conditions and at greater target ranges. Error size was not significantly affected by: flight direction altitude changes from low rap-of-the-earth (20-60 feet) to low contour (100-110 feet); interfering noises from 90-mm, mufire; or wearing a comiat helmet. There were significant differences associated with interfering noise from passing vehicles and with subjects' auditory acuity. | | UNCL | Aircraft Detection and Tracking | 3. Acoustics | | מאכר | 1. Aircraft | 2. Detection and
Tracking | 3. Acoustics | | | Accession No. | U. S. Army Human Engineering Laboratories Abendeen Proving Ground, Maryland AUDITORY LOCALIZATION OF A HELICOPTER FROM GROUND POSITION | Robert W. Bauer Technical Memorandum 15-63 Unclassified AMCMS Code 5162, 12, 660, 08 | udies of unaided auditorry localization summarized. In each, an UH-1B in the sound source and was localized by the sound source and was localized by besolute mean angular errors of different conditions ranged from 80 to 2 strors found under quieter (condition Error size was not significantly at it, allitude changes from low nap-of-low contour (100-110 feet); interfer gunfire; or wearing a combat beline at differences associated with interfer differences associated with interfer vehicles and with subjects' auditory | Accession No. | U. S. Army Human Engineering Laboraturies Abordson Proving Count Married | AUDITORY LOCALIZATION OF A HELICOPTER
FROM GROUND POSITION | Robert W. Bauer July 1963 Technical Memorandum 15-63 Unclassified AMCMS Code 5162, 12, 660, 08 | Three studies of unaided auditory localization of a helicopter are summarized. In each, an UH-1B helicopter in flight was the sound source and was localized by subjects on the ground. Absolute mean angular errors of different groups and under different conditions ranged from 8° to 24°and more, with smaller errors found under quieter conditions and at greater target, ranges. Error size was not significantly affected by: flight direction; altitude changes from low nap-of-the-earth (20-60 feet) to low contour (100-110 feet); interfering noises from 90-nm. gruffre; or wearing a corbat helmet. There were significant differences associated with interfering noise from passing vehicles and with subjects 'auditory acuity. | | ₽' | U. S
Aberc
AUDI
FRON | Rob
Tec | belling the the the and with target flight from were from | ₹
 ₽ | U. S | ACD
FRO | Robe
Tech | helic
in fli
the g
and i
with
flight
flight
from
were
from | 1 こうこう こうしんけんかい はっているかいかいしている Detection and Detection and CINCL . Acoustics Tracking Acoustics Aircraft Tracking Aircraft with smaller errors found under quieter conditions and at greater with smaller errors found under quieter conditious and at greater and under different conditions ranged from 80 to 240 and more, in flight was the sound source and was localized by subjects on the ground. Absolute mean angular errors of different groups in flight was the sound cource and was localized by subjects on and under different conditions ranged from 80 to 240 and more, the ground. Absolute mean angular errors of different groups were significant differences associated with interfering noise target ranges. Error size was not significantly affected by: (20-60 feet) to low contour (100-110 feet); interfering noises target ranges. Error size was not significantly affected by: helicopter are summarized. In each, an UH-1B helicopter flight direction; altitude changes from low nap-of-the earth helicopter are summarized. In each, an UH-1B helicopter from passing vehicles and with subjects' auditory acuity. Three studies of unaided auditory localization of a Three sadies of unaided auditory localization of a from 90-mm. gunfire; or wearing a combat helmet. AUDITORY LOCALIZATION OF A HELICOPTER --AUDITORY LACALIZATION OF A HELICOPTER July 1963 Unclassified U. S. Army Human Engineering Latoratories U. S. Army Firman Engineering Laboratories Accession No. Accession No. Unclassified Aberdeen Proving Ground, Maryland Aberdeen Proving Ground, Maryland Technical Memorandum 15-63 Technical Menorandum 15-63 AMCMS Code 5162, 12, 660, 08 AMCMS Code 5162, 12, 660, 08 FROM GROUND POSITION FROM GROUND POSITION Robert W. Bauer Robert W. Baner 8 ð UNCL CNCL Detection and Detection and Acoustics Tracking Acoustics Tracking Aircraft 1. Aircraft with smaller errors found under quieter conditions and at greater with smaller errors found under quieter conditions and at greater in flight was the sound source and was localized by subjects on the ground. Absolute mean angular errors of different groups and under different conditions ranged from 8^0 to 2Φ and more, in flight was the sound source and was localized by subjects on and under different conditions ranged from 80 to 240 and more, the ground. Absolute mean angular errors of different groups were significant differences associated with interfering noise target ranges. Error size was not significantly affected by: (20-60 feet) to low contour (100-110 feet); interfering noises target ranges. Error size was not significantly affected by: flight direction; altitude changes from low nap-of-the-earth from 90-mm. gunfire; or wearing a combat belmet. There helicopter are summarized. In each, an UH-1B helicopter helicopter are summarized. In each, an UH-1B helicopter from passing vehicles and with subjects' auditory acuity. Three studies of unaided auditory localization of a Three studies of unaided auditory localization of a Aberdeen Proving Ground, Maryland AUDITORY LOCALIZATION OF A HELLICOPTER --AUDITORY LOCALIZATION OF A HELLICOPTER --S. Army Hıman Engineering Laboratories July 1963 Unclassified U. S Army Human Engineering Laboratories Unclassified Accession No. Accession No. July 1963 Aberdeen Proving Ground, Maryland T-chnical Memorandum 15-63 Technical Memorandum 15-63 AMCMS Code 5162, 12, 660, 08 AMCMS Code 5162, 12, 660, 08 FROM GROUND POSTITON FROM GROUND POSITION Robert W. Bauer Robert W. Bauer 8 9 COLUMN TENED SOUTH ii ji were significant differences associated with interfering noise were significant differences associated with interfering noise from passing vehicles and with subjects' auditory acuity. (20-60 feet) to low contour (100-110 lieet); interfering noises flight direction; altitude changes from low map-of-the-earth from 90-mm, gunfire; or wearing a combat helmet. There from 90-mm. gunfire; or wearing a combat helmet. from passing vehicles and with subjects' auditory acuity. flight direction; altitude changes from low nap-of-the-earth (20-60 feet) to low contour (100-110 feet); interfering noises